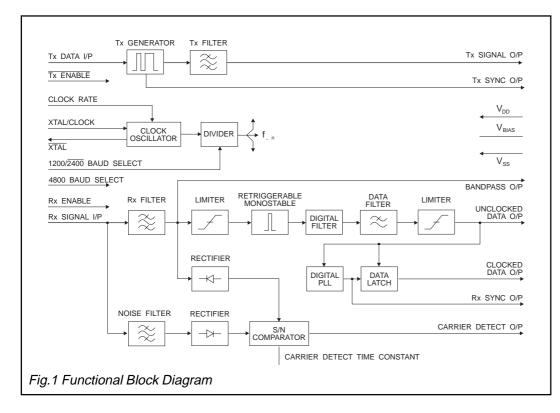


CML Semiconductor Products

PRODUCT INFORMATION


FX469 1200/2400/4800 Baud FFSK Modem

Publication D/469/6 April 1998

Features

- Selectable Data Rates1200, 2400 and 4800 Baud
- Full-Duplex FFSK
- Rx and Tx Bandpass Filters
- Clock Recovery and Carrier Detect Facilities
- Rx and Tx Enable Functions

- Pin Selected Xtal/Clock Inputs 1.008MHz or 4.032MHz
- Radio and General Applications
 - Data-Over-Radio
 - PMR and Cellular Signalling
 - Portable Data Terminals
 - Personal/Cordless Telephone

FX469

Brief Description

The FX469 is a single-chip CMOS LSI circuit which operates as a full-duplex pin-selectable 1200, 2400 or 4800 baud FFSK Modem. The mark and space frequencies are 1200/1800, 1200/2400 and 2400/4800 Hz respectively. Tone frequencies are phase continuous; transitions occur at the zero crossing point.

Employing a common Xtal oscillator with a choice of two clock frequencies (1.008MHz or 4.032MHz) to provide band-rate, transmit frequencies, and Rx and Tx synchronization, the transmitter and receiver operate entirely independently including individual section powersave functions.

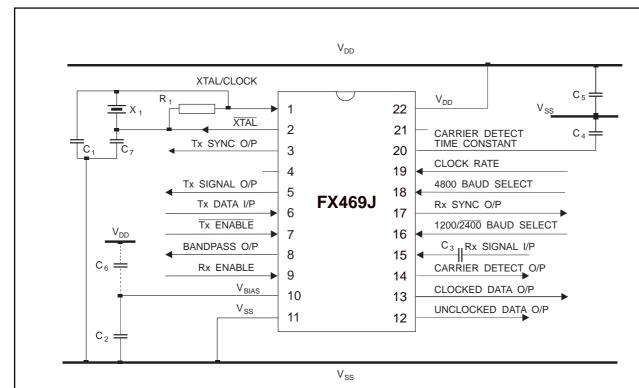
The FX469 includes on chip circuitry for Carrier Detect and Rx Clock recovery, both of which are made available as output pins.

Rx, Tx and Carrier Detect paths each contain a bandpass filter to ensure the provision of optimum signal conditions both in the modem and for the Tx modulation circuitry.

The FX469 demonstrates a high sensitivity and good bit-error-rate under adverse signal conditions; the carrier detect time constant is set by an external capacitor, whose value should be arranged as required to further enhance this product's performance in high noise environments.

This low-power device requires few external components and is available in small outline plastic (S.O.I.C) and cerdip DIL packages.

FX469P package discontinued

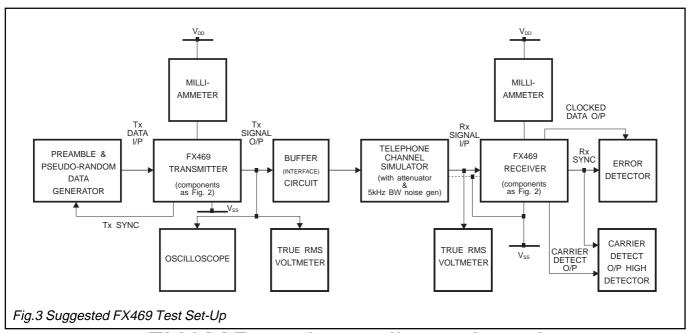

Pin Number Function

	FX469	1/20									
1	1	1	Xtal/Clock : The input to the on-chip inverter, for use with either a 1.008MHz or a 4.032MHz Xtal or external clock. Clock frequency selection is by the "Clock Rate" input pin. The selection of this frequency will affect the operational Data Rate of this device. Refer to Baud Selection information on the next page. Operation of any CML microcircuit without a Xtal or clock input may cause device damage. To minimise damage in the event of a Xtal/drive failure. it is recommended that the power rail (V _{DD}) is fitted with a current limiting device (resistor or fast-reaction fuse).								
2	2	2	XtalN: Output of	the on-chip inver	er.						
3	3	3		Tx Sync O/P : A squarewave, produced on-chip, to synchronize the input of logic data and transmission of the FFSK signal (See Figure 4).							
4	5	5	sinewave) FFSK s	Tx Signal O/P: When the transmitter is enabled, this pin outputs the (140-step pseudo sinewave) FFSK signal (See Figure 4). With the transmitter disabled, this output is set to a high-impedance state.							
5	7	6	Tx Data I/P: Serial logic data to be transmitted is input to this pin.								
6	8	7	Tx EnableN : A logic '0' will enable the transmitter (See Figure 4). A logic '1' at this input will put the transmitter into powersave whilst forcing "Tx Sync Out" to a logic '1' and "Tx Signal Out" to a high-impedance state. This pin is internally pulled to V _{DD} .								
7	9	8	Bandpass O/P : 10kw and may red	•	•	. This output impeda	ance is typically				
8	10	9	Rx Enable: The	control of the Dy	function. The centre	ol of other outputs is	givon bolow				
	10			= Rx Function	Clock Data O/P	Carrier Detect	Rx Sync Out				
			"1" =		Enabled	Enabled	Enabled				
			"0" =	= Powersave	"0"	"0"	1" or "0"				
9	11	10	should be decoup	led to V _{ss} by a ca	alogue bias circuitry pacitor (C_2). (See Fer all powersave col	. Held internally at V igure 2. nditions.	_{DD} /2, this pin				
10	12	11	V _{ss} : Negative sur	oply rail (GND).							

Pin Number Function

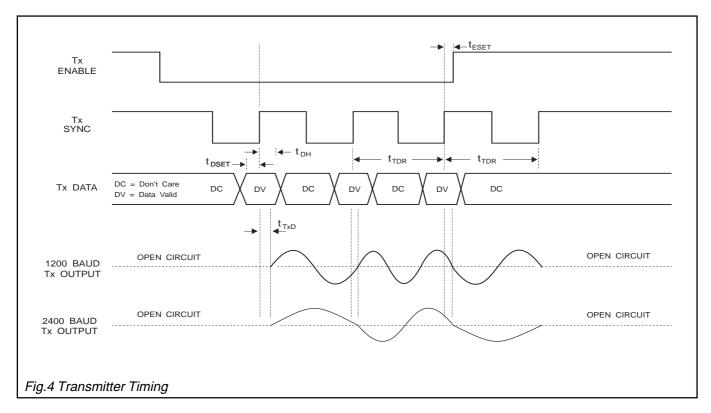
DW	FX469 LG/LS	J/P6									
11	13	12	Unclocked Data O/P: The reco	vered asynchrono	ous serial d	ata outpu	it from the	e receiver.			
12	14	13		locked Data O/P: The recovered synchronous serial data output from the receiver. ata is latched out by the recovered clock, available at the "Rx Sync O/P," (See Figure 5).							
13	15	14	Carrier Detect O/P: When an FFSK signal is being received this output is a logic '1.'								
14	16	15	Rx Signal I/P: The FFSK signal input for the receiver. This input should be coupled via a capacitor, $\rm C_3$.								
15	18	17	Rx Sync O/P: A flywheel square FFSK data (See Figure 5).	Rx Sync O/P: A flywheel squarewave output. This clock will synchronize to incoming Rx FFSK data (See Figure 5).							
16	19	16	1200/2400 Baud Select: A logic '1' on this pin selects the 1200 baud option. Tone frequencies are: one cycle of 1200Hz represents a logic '1,' one-and-a-half cycles of 1800Hz represents a logic '0.' A logic '0' on this pin selects the 2400 baud option. Tone frequencies are: one-half cycle of 1200Hz represents a logic '1,' one cycle of 2400Hz represents a logic '0.' This function is also used, in part, to select the 4800 baud option. The pin has an internal 1Mw pullup resistor. Operational Data Rate Configurations are illustrated in the table below.								
			W-101-1 F								
			Xtal/Clock Frequency 1.008MHz 4.032MHz								
							_				
			Clock Rate pin 1200/2400 Select pin	1.008MH 0 1	2 0 0	1 1	4 .032MH 1 0	1 0			
			Clock Rate pin 1200/2400 Select pin 4800 Select pin	0 1 0	0 0 0	1 1 0	1 0 0	1 0 1			
			Clock Rate pin 1200/2400 Select pin	0 1	0 0	1 1	1 0	1			
17	20	18	Clock Rate pin 1200/2400 Select pin 4800 Select pin	0 1 0 1200 1 this pin combine of 1 this pulldow cycle of 2400Hz re	0 0 2400 d with a log vn resistor)	1 1 0 1200 gic '0' on t	1 0 0 2400 the 1200/	1 0 1 4800 2400 Baud e of 4800Hz			
17	20 21	18	Clock Rate pin 1200/2400 Select pin 4800 Select pin Baud Rate 4800 Baud Select: A logic '1' o Select pin will select the 4800 op Tone frequencies are: one-half	0 1 0 1200 n this pin combined the pulldow cycle of 2400Hz recan only be achieved and allow the use the pullow the use the pullow the use the pullow the	0 0 2400 d with a log vn resistor) epresents a ved using a	1 1 0 1200 gic '0' on to a logic '1,' a 4.032Ml	1 0 0 2400 the 1200/ one cycl Hz Xtal in	1 0 1 4800 2400 Baud e of 4800Hz put.			
			Clock Rate pin 1200/2400 Select pin 4800 Select pin Baud Rate 4800 Baud Select: A logic '1' o Select pin will select the 4800 op Tone frequencies are: one-half represents a logic '0.' This state Clock Rate: A logic input to sele Xtal/clock. Logic '1' = 4.032MHz	0 1 0 1200 1200 n this pin combined the pulldow cycle of 2400Hz recan only be achieved and allow the use logic '0' = 1.008N rect and allow the use logic '0' = 1.008N rect and allow the use logic '0' = 1.008N	0 0 2400 d with a log vn resistor) epresents a ved using a see of either that a log ved using a see of either that a log ved using a see of either that a log ved using a log	1 1 0 1200 gic '0' on to a logic '1,' a 4.032Ml a 4.032Ml a togic '1,'	the 1200/ one cycl Hz Xtal in MHz or 4. an interna	1 0 1 4800 2400 Baud e of 4800Hz put. 032MHz al pulldown			
18	21	19	Clock Rate pin 1200/2400 Select pin 4800 Select pin Baud Rate 4800 Baud Select: A logic '1' o Select pin will select the 4800 op Tone frequencies are: one-half represents a logic '0.' This state Clock Rate: A logic input to sele Xtal/clock. Logic '1' = 4.032MHz resistor (1.008MHz). Carrier Detect Time Constant C ₄ connected to this pin will affect	o 1 0 1200 1200 n this pin combined by the pulldow cycle of 2400Hz recan only be achieved and allow the use a logic '0' = 1.008M recan property of the carrier of the carrier detects the carrier detects and allow the carrier	0 0 2400 d with a log vn resistor) epresents a ved using a ved us	1 1 0 1200 gic '0' on to a logic '1,' a 4.032Ml a 4.032Ml a togic '1,'	the 1200/ one cycl Hz Xtal in MHz or 4. an interna	1 0 1 4800 2400 Baud e of 4800Hz put. 032MHz al pulldown			

Application Information

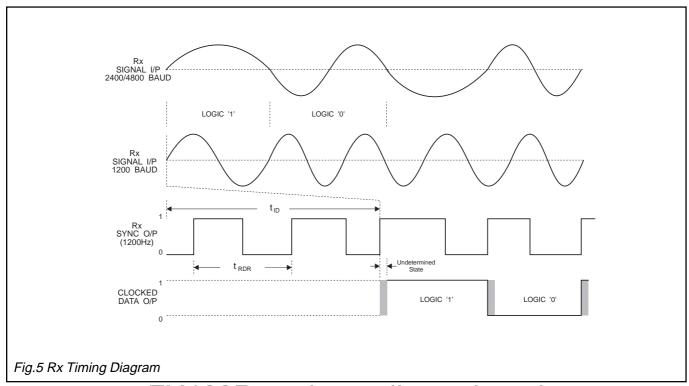


Component	Value	Tolerance
R ₁	1.0MW	±10%
C ₁	33.0pF	
C ₂	1.0μF	±20%
C ₃	0.1µF	
C_4	0.1µF	±10%
C_5	1.0µF	±20%
C_6	1.0µF	
C_7	33.0pF	
X_1	1.008MHz	See
•	or	'Clock-Rate'
	4.032MHz	Pin

Fig.2 External Components


Notes

- 1. $V_{\rm BIAS}$ may be decoupled to $V_{\rm SS}$ and $V_{\rm DD}$ using C_2 and C_6 when input signals are referenced to the $V_{\rm BIAS}$ pin. For input signals referenced to $V_{\rm SS}$, decouple $V_{\rm BIAS}$ to $V_{\rm SS}$ using C_2 only.
- 2. Use $\rm C_{\scriptscriptstyle 5}$ when input signals are referenced to $\rm V_{\rm SS}$, to decouple $\rm V_{\rm DD}.$
- The value of C₄ determines the Carrier Detect time constant. A long time constant results in improved noise immunity but increased response time. C₄ may be varied to trade-off response time for noise immunity.
- C₇ reduces Xtal voltage overshoot. Refer to CML Xtal Application Note D/XT/2 December 1991.


FX469P package discontinued

Application Information

Characteristics		Note	Min.	Тур.	Max.	Unit
Tx Delay, Signal to Disable Time	t _{eset}	3	2.0	-	800	μs
Data Set-Up Time	tDSET	1	2.0	-	-	μs
Data Hold Time	t _{DH}		2.0	-	-	µs
Tx Delay to O/P Time	t _{TxD}		-	1.2	-	µs
Tx Data Rate Period	t _{TDR}	3	-	833	-	µs
Rx Data Rate Period	t _{RDR}	3	800	-	865	µs
Undetermined State	KDK		-	-	2.0	µs
Internal Rx Delay	t _{in}		-	1.5	-	ms

- 1. Consider the Xtal/Clock tolerance.
- 2. All Tx timings are related to the Tx Sync Output.
- 3. 1200 baud example.

Specification

Absolute Maximum Ratings

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not implied.

Supply voltage -0.3 to 7.0V Input voltage at any pin (ref $V_{SS} = 0V$) -0.3 to $(V_{DD} + 0.3V)$ Sink/source current (supply pins) +/- 30mA (other pins) +/- 20mA Total device dissipation @ T_{AMB} 25°C 800mW Max. 10mW/°C Derating

Operating temperature range: FX469DW/LG/LS/P6 -30°C to +70°C (plastic)

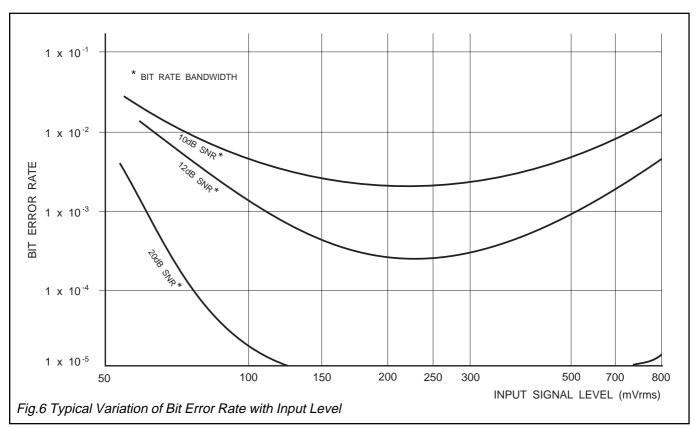
FX469J -30°C to +85°C (cerdip)

FX469DW/LG/LS/P6 -40°C to +85°C (plastic) Storage temperature range:

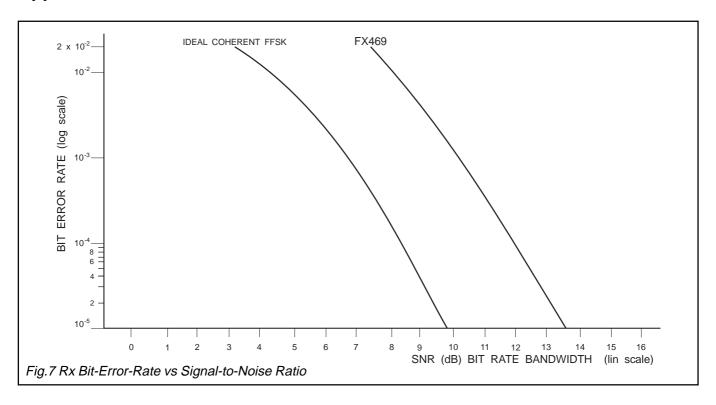
FX469J -55°C to +125°C (cerdip)

Operating Limits

All device characteristics are measured under the following conditions unless otherwise specified: $V_{DD} = 5.0V$, $T_{AMB} = 25$ °C. Audio Level 0dB ref: = 300mVrms. Xtal/Clock = 4.032MHz. Signal-to-Noise Ratio measured in the Bit-Rate Bandwidth Baud Rate = 1200 baud.


See Note	Min.	Тур.	Max.	Unit
	4.5	5.0	5.5	V
ed	-	3.6	-	mA
	-	4.5	-	mA
	-	650	-	μΑ
1	4.0	-	-	·V
1	-	-	1.0	V
	-	4.0	-	kw
	100	-	-	kw
	-	0.6	1.0	kw
	10.0	-	-	Mw
	5.0	-	15.0	kw
	10.0	-	20.0	V/V
	4.1	-	-	MHz
2	-	1.008	-	MHz
2	-	4.032	-	MHz
ID 0.4	400	000	4000	\ /
	100	230	1000	mVrms
		0.5		404
	-		-	10⁴ 10³
	-		-	_
	-	1.5	-	10 ³
		4.0		408
2	-	<1.0	-	10 ⁸
IB 7				
	-	0.995	-	
5. 10				
·	-	-	150	mVrms
- , -				
		0.005		
dB 5, 9		0.995		
	2 2 2 dB 3, 4 dB 4 dd d	4.5 ed 1 4.0 1 100 - 100 - 10.0 5.0 10.0 4.1 2 - 2 dB 3, 4 100 dB 4 d - d - d - dB 4 d - d - dB 4 d - d - d - dB 7 - 5, 10	4.5 5.0 - 3.6 - 4.5 - 650 1 4.0 1 - 4.0 100 - 0.6 10.0 - 0.6 10.0 - 10.0 - 10.0 - 4.1 2 - 1.008 2 - 1.008 2 - 1.5 - 1.5	4.5 5.0 5.5 ad

Specification


Characteristics	,	See Note	Min.	Тур.	Max.	Unit
Transmitter Output						
Tx Output Level			-	775	-	mVrms
Output Level Variation						
1200/1800Hz or 1200/2	400Hz or 2400/4	1800Hz	0	-	±1.0	dB
Output Distortion			-	3.0	5.0	%
3rd Harmonic Distortion			-	2.0	3.0	%
Logic '1' Carrier Frequency	1200 Baud	6	-	1200	-	Hz
	2400 Baud	6	-	1200	-	Hz
	4800 Baud	6	-	2400	-	Hz
Logic '0' Carrier Frequency	1200 Baud	6	-	1800	-	Hz
	2400 Baud	6	-	2400	-	Hz
	4800 Baud	6	-	4800	-	Hz
Isochronous Distortion						
1200Hz - 1800Hz/1800Hz - 1200Hz			-	25.0	40.0	μs
1200Hz - 2400Hz/2400Hz - 1200Hz			-	20.0	30.0	μs
2400Hz - 4800Hz/4800Hz - 3	2400Hz			-	10.0	20 µs

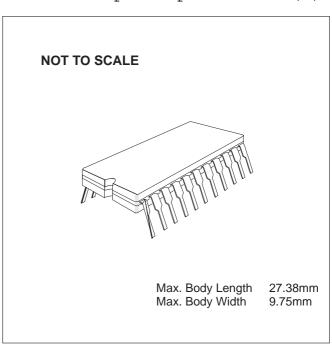
Notes

- 1. With reference to $V_{DD} = 5.0$ volts.
- 2. Xtal frequency, type and tolerance depends upon system requirements.
- 3. See Figure 5 (variation of BER with Input Signal Level).
- 4. SNR = Signal-to-Noise Ratio in the Bit-Rate Bandwidth.
- 5. See Figure 2.
- 6. Dependent upon Xtal tolerance.
- 7. 10101010101 ...01 pattern.
- 8. Measured with a 150mVrms input signal (no noise); 1200/2400 baud operation.
- 9. Reference (0dB) level for C.D. probability measurements is 230mVrms.
- 10. For 1200 and 2400 baud operation only; when operating at 4800 baud the Carrier Detect output should be ignored.

Application Information

Package Outlines

The FX469 is available in the package styles outlined below. Mechanical package diagrams and specifications are detailed in Section 10 of this document. Pin 1 identification marking is shown on the relevant diagram and pins on all package styles number anti-clockwise when viewed from the top.


Handling Precautions

The FX469 is a CMOS LSI circuit which includes input protection. However precautions should be taken to prevent static discharges which may cause damage.

FX469DW 20-pin plastic S.O.I.C.

Max. Body Length Max. Body Width 12.95mm 7.59mm

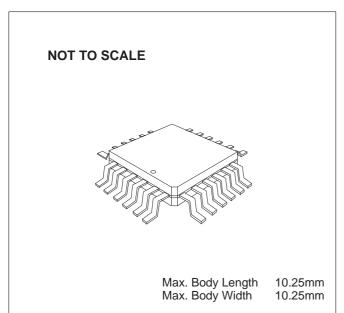
FX469J 22-pin cerdip DIL (J3)

(D3)

Package Outlines

FX469LG 24-pin quad plastic encapsulated

bent and cropped


(I1)

24-lead plastic leaded chip FX469LS carrier

NOT TO SCALE

Max. Body Length 10.40mm 10.40mm Max. Body Width

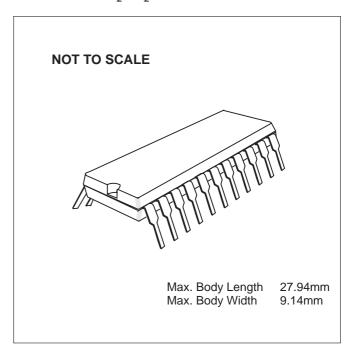
(L2)

Ordering Information

FX469DW 20-pin surface mount S.O.I.C.

FX469J 22-pin cerdip DIL

FX469LG 24-pin quad plastic encapsulated


bent and cropped

(I1)

24-lead plastic leaded chip carrier FX469LS

(L2)

FX469P6 22-pin plastic DIL FX469P6 22-pin plastic DIL

CML does not assume any responsibility for the use of any circuitry described. No circuit patent licences are implied and CML reserves the right at any time without notice to change the said circuitry.

CML Product Data

In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name changes and, whilst maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single title CML Microcircuits.

These companies are all 100% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

Company contact information is as below:

COMMUNICATION SEMICONDUCTORS

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com

COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050, 0800 638 5577

Fax: +1 336 744 5054 us.sales@cmlmicro.com www.cmlmicro.com

No 2 Kallang Pudding Road, 09-05/ 06 Mactech Industrial Building, Singapore 349307

Tel: +65 7450426 Fax: +65 7452917 sg.sales@cmlmicro.com www.cmlmicro.com